
Tetrahedron Letters,Vo1.30,No.45,pp 6135-6138,1989 0040-4039/89 $3.00 + .oo 
Printed in Great Britain Perqamon Press plc 

TRANSFORMATION OF A FlONOVIN'YLPORPHYRIN TO BENEOPORPHYRINS 

VIA DIELS-ALDER ADDUCTS 

Paul Yon-Hin, Tilak P. Wijesekera and David Dolphin* 

Department of Chemistry 

University of British Columbia 

2036 Main Mall, Vancouver, B.C. 

Canada V6T lY6 

A ,9-unsubstituted-fl'-vinylporphyrin has been synthesized which reacted with an 
excess of acetylenedicarboxylate ester to give monobenzoporphyrins in high yield. 
Evidence that suggests an isomerization of the initial adduct to a new porphyrin enroute 
to the benzoporphyrin is presented. 

Activated dienophiles are known to undergo [2+4] cycloaddition reactions with the 

vinyl and cross-conjugated B,p'-double bond of protoporphyrin IX dimethyl ester (1) to 

give "chlorins" as stable products.1*2 Recently, we have shown that the chlorin 

cycloadduct 2 formed with an acetylenedicarboxylate ester, undergoes aromatization (with 

the loss of the angular methyl group) in the presence of base and excess dienophile or 

other electron acceptors such as p-benzoquinone to give a benzoporphyrin 3 (Scheme 1). 3 

In order to further explore the aromatization of the cycloadduct and also provide a more 

direct and facile approach to benzoporphyrins. the reaction of acetylenedicarboxylate 

esters with a p-unsubstituted-@'-monovinylporphyrin 18 was investigated. 
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Scheme I 

In the only previously reported synthesis of a fl-unsubstituted-@'-monovinyl- 

porphyrin, Djerassi and coworkers 4 employed dipyrromethanes as intermediates with an 

acetyl function as the vinyl precursor. However, the inherent deactivating effect of the 

acetyl substituent towards nucleophilic reactions of rr-unsubstituted pyrroles, resulted in 

structurally similar by-products (which required chromatographic separation) both at the 

dipyrromethane and porphyrin cyclization stages. We chose to construct the porphyrin 

macrocycle using Johnson's regioselective synthesis 5,6 via dipyrromethenes and 

biladienes-a,c with a less deactivating acetate ester as the vinyl precursor (Scheme 2). 
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Scheme 2 

The crucial monopyrrolic precursor lit was prepared in high yield from the pyrrole 

47 via the intermediates 5 through 10 using standard transformations described in the 

literature."8 Condensation of 11 with the 5-unsubstituted 2-pyrrolecarboxaldehyde 129 in 

the presence of aqueous hydrobromic acid gave a first crop yield of 65% for the crystal- 

line 5'-unsubstituted-5-methyl-2,2'-dipyrromethene 13. Coupling of 13 with S'-bromo- 

methyl-5-bromo-2,2'-dipyrromethene 146 using anhydrous stannic chloride as the catalyst, 

produced the corresponding 1-bromo-19-methyl,5,15_biladiene (>85%) which was cyclized in 

dimethyl sulphoxide-pyridine to the porphyrin 15 in 75% yield. Metalation of 15 with 

zinc, reduction of the acetate substituent (LiAlH4) followed by demetalation 

(trifluoroacetic acid) gave the hydroxyethylporphyrin 16 (90% overall) which was subse- 

quently converted to the chloroethyl derivative 17 in near quantitative yield, using 

thionyl chloride. Treatment of 17 with sodium hydroxide in pyridine-water produced the 

desired monovinylporphyrin 181° (85%). 

t All new compounds have been characterized by high resolution mass and lH n.m.r. 

spectroscopy. 



6137 

Heating 18 with a 50 fold molar excess of dimethyl acetylenedicarboxylate (19, R-Me) 

in toluene at 110°C in a degassed sealed tube gave, after 24 h, the benzoporphyrin 20 

(R-Me) in 80% yield (Scheme 3). This exhibited a rhodo-type electronic spectrum+ (Am,, 

CH2C12 - 402, 512, 548, 578 and 630 nm) characteristic of benzoporphyrins and its struc- 

ture was confirmed by 'H n.m.r. and mass spectroscopy (molecular ion m/z 602). With 

diethyl acetylenedicarboxylate (19, R-Et), under similar reaction conditions, the 

corresponding benzoporphyrin (20, R-Et) was obtained in equally high yield. However, when 

di-a-butyl acetylenedicarboxylate (19, R-(Me)3C-) was used, m porphyrin products (in 

3:l ratio) were isolated in 60% overall yield. The minor component corresponded to the 

benzoporphyrin 20 (R-(Me)3C-) with a rhodo-type spectrum, an (M+ + 1) peak at m/z 687 in 

the fast atom bombardment-mass spectrum and a 1 H n.m.r. consistent with its proposed 

structure, showing two doublets at 5 8.58 and 6 9.44 assigned to Ha and Hb respectively. 

The major component also exhibited a rhodo-type spectrum (A,,, CH2C12 - 408, 510, 550, 574 

and 636 nm) and its mass spectrum (molecular ion m/z 688) and 'H n.m.r. spectrum (two 

triplets at 6 3.30 and 6 4.25 assigned to Ha and Hb respectively, Scheme 3) were consis- 

tent with the structure 22 (R-(Me)3C-). 

R02CC s CCC$R 

19 

18 

Scheme 3 

The above results suggest that the reaction of acetylenedicarboxylate esters with 

the vinylporphyrin 18 also proceeds via a (4+2) cycloaddition reaction to give, initially, 

a chlorin type adduct 21 (Scheme 3). However, unlike the case of the methyl-vinyl 

analogue (protoporphyrin IX),3 the chlorin 21 undergoes a rapid rearrangement to give the 

thermodynamically more stable porphyrin 22 which is subsequently oxidized to the benzo- 

porphyrin 20. The fact that the yield of benzoporphyrin was significantly reduced and 

t In rhodo-type porphyrin spectra the intensity of the four visible bands is III > IV 

> II > I. 
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that the porphyrin 22, with the conjugated diene system, could be isolated when the 

dienophile 19 was changed to the sterically hindered m-butyl ester is consistent with 

the suggestion that the dienophile acts as the electron acceptor in the oxidation of 22 to 

the benxoporphyrin 20. 
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'H-NMR of 18 (CDCl3, 400 MHz): 6 -3.66 (s, 2H, NH), 1.90 (3t, 9H, 3 x CH2CI13), 3.60 

(3H), 3.64 (3H), and 3.66 (3H), (s, 3 x CH3), 4.15 (3q, 6H, 3 x C$CH3), 6.40 (d, 

lH, J - 12 Hz, CH-C+), 6.63 (d, lH, J - 17 Hz, CH-Ca2), 8.47 (dd, lH, C&CH2), 9.44 

(s, lH, pyrrole-H), 10.06 (lH), 10.07 (lH), 10.10 (lH), and 10.26 (1H) (s, 4 x 

meso-H). 
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